US009384133B2

a2 United States Patent

Gschwind

(10) Patent No.: US 9,384,133 B2
(45) Date of Patent: Jul. 5, 2016

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

SYNCHRONIZING UPDATES OF PAGE
TABLE STATUS INDICATORS AND
PERFORMING BULK OPERATIONS

Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Inventor: Michael K. Gschwind, Chappaqua, NY
Us)

Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 132 days.

Appl. No.: 14/292,656

Filed: May 30, 2014

Prior Publication Data

US 2015/0347044 A1l Dec. 3, 2015

Int. Cl1.

GO6F 12/08 (2016.01)

GO6F 12/10 (2016.01)

GO6F 3/06 (2006.01)

GO6F 12/12 (2016.01)

U.S. CL

CPC GO6F 12/0833 (2013.01); GO6F 3/065

(2013.01); GOGF 3/0611 (2013.01); GO6F
3/0619 (2013.01); GOGF 3/0644 (2013.01);
GOGF 3/0656 (2013.01); GOGF 3/0664
(2013.01); GOGF 3/0673 (2013.01); GO6F
12/0882 (2013.01); GOGF 12/1009 (2013.01);
GOGF 12/128 (2013.01); GOGF 2212/1008
(2013.01); GO6F 2212/152 (2013.01); GO6F
2212/608 (2013.01); GO6F 2212/62 (2013.01);
GOGF 2212/657 (2013.01); GOGF 2212/683
(2013.01); GO6F 2212/69 (2013.01)

RCsync INITIATED ON

700~ | 0CAL PROCESSOR

WAIT FOR CONFIRMATION
MESSAGE FROM REMOTE
PROCESSORS

CONFIRMATIONS

RCsync COMPLETE

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,197,139 A 3/1993 Emma

5,758,120 A 5/1998 Kabhle et al.

6,119,204 A * 9/2000 Chang GO6F 12/1027
711/141

6,286,092 Bl 9/2001 Frank

6,647,468 B1 11/2003 Woodward

6,880,045 B2 4/2005 Pong et al.

7,069,361 B2 6/2006 Owen et al.

7,096,323 Bl 8/2006 Conway et al.

7,549,035 Bl 6/2009 Cameron et al.

7,552,254 Bl 6/2009 George et al.

(Continued)
OTHER PUBLICATIONS

List of IBM Patents or Patent Applications Treated as Related, 1 page.
(Continued)

Primary Examiner — Kaushikkumar Patel

(74) Attorney, Agent, or Firm — Steven L. Bennett, Esq.;
Blanche E. Schiller, Esq.; Heslin Rothenberg Farley & Mesiti
P.C.

(57) ABSTRACT

A synchronization capability to synchronize updates to page
tables by forcing updates in cached entries to be made visible
in memory (i.e., in in-memory page table entries). A synchro-
nization instruction is used that ensures after the instruction
has completed that updates to the cached entries that occurred
prior to the synchronization instruction are made visible in
memory. Synchronization may be used to facilitate memory
management operations, such as bulk operations used to
change a large section of memory to read-only, operations to
manage a free list of memory pages, and/or operations asso-
ciated with terminating processes.

20 Claims, 18 Drawing Sheets

OPTIONALLY ACCELERATE |~724
WRITEBACK OF RIC
UUPDATE REQUESTS

WAIT UNTIL MARKER COME:
TO FRONT OF QUEUE

INDICATE COMPLETION
OF REMOTE RCsyne TO
REQUESTO|

[~—728

US 9,384,133 B2
Page 2

(56)

8,296,520
8,307,194
8,341,379
2004/0073755
2007/0061548
2007/0106874
2009/0193192
2010/0332789

2011/0307653
2012/0079201

2012/0203984
2013/0013863
2013/0031333

2013/0046937
2013/0212313
2013/0298120

2014/0317358

References Cited

U.S. PATENT DOCUMENTS

B2
Bl
B2
Al*
Al*
Al*
Al*
Al*

Al
Al*

Al
Al
Al*

Al
Al
Al*

Al*

10/2012
11/2012
12/2012
4/2004
3/2007
5/2007
7/2009
12/2010

12/2011
3/2012

8/2012
1/2013
1/2013

2/2013
8/2013
11/2013

10/2014

Le et al.

Scott et al.

Pan et al.

Webb, Ir. GOG6F 12/0826
711/144

Jordan GOG6F 12/1027
711/207

Pan ..o GO6F 12/10
711/206

Burckhardt GO6F 12/0831
711/124

Sugumar GO6F 12/1081
711/207

Rudelic et al.

Dallyccoeeenn GOG6F 12/0842
711/121

Woffinden

Cher et al.

Sankaran GOG6F 12/1027
711/207

Heller, Jr.

Cota-Robles et al.

Durham GO6F 12/145

718/1

Meier ..o GOG6F 12/0817

711/141

2015/0100753 Al* 42015 Shen GO6F 12/1027
711207
2015/0347300 Al 12/2015 Gschwind
2015/0347301 Al 12/2015 Gschwind
2015/0347306 Al 12/2015 Gschwind
OTHER PUBLICATIONS

“Power PC® Microprocessor Family: The Programming Environ-
ments Manual for 32 and 64-bit Microprocessors,” Version 2.3, Mar.
2005, pp. 1-722.

“z/Architecture—Principles of Operation,” IBM Publication No.
SA22-7932-09, 10” Edition, Sep. 2012, pp. 1-1568.

Power ISA™ Version 2.07 specification, May 3, 2013, pp. 1-1526.
Intel Itanium Architecture Software Developer’s Manual vol. 2: Sys-
tem Architecture, Document No. 245318, May 2010, pp. 1-676.
Gschwind, Michael K., “Synchronizing Updates of Page Table Status
Indicators in a Multiprocessing Environment,” U.S. Appl. No.
14/292,604, filed May 30, 2014, pp. 1-70.

Office Action for U.S. Appl. No. 14/481,244 dated Nov. 4, 2015, pp.
1-25.

Office Action for U.S. Appl. No. 14/292,604 dated Nov. 5, 2015, pp.
1-31.

Office Action for U.S. Appl. No. 14/481,403 dated Dec. 17,2015, pp.
1-13.

List of IBM Patents or Patent Applications Treated as Related, Mar.
10, 2016, pp. 1-2.

* cited by examiner

U.S. Patent Jul. 5, 2016 Sheet 1 of 18 US 9,384,133 B2
100
102 102
CPU
CPU
104 104
L MMU J L MMU J
ADDRESS TRANSLATION ADDRESS TRANSLATION
STRUCTURES STRUCTURES
_J _J
1057 406 107 1057 106 107
CACHE | |SYNCHRONIZE CACHE | |SYNCHRONIZE
1
r‘ 08
= MEMORY
CACHE |H_-
0 F~112 110
EXTERNAL /0 DEVICES
AND DATA —114

FIG. 1

US 9,384,133 B2

Sheet 2 of 18

Jul. §5,2016

U.S. Patent

¢ 9ld
r-- - - - - - T T T T T T T == 1
Nmm\+k_ JHOVO | |FZINOYHONASH- ¥€C _
SN\“,(\ STNLONYLS _
NOILYISNVML SSTMaaY .
omNL)_I TN 4 4 'ddv | |
_ zee | £SI0~vee _
0Le— undo E | oz
_ — — _
301A30
zez—-1 aHovo | [aziNodHoNAS}H EZ 0ce rie N g on
_ TUYMARIA || %z | .
1€zt h— sFunLonyls 40SS3004d 'l LNn
|| rinouvisveil ssay HHo -, AE 75%) | |rouwoon | oz
0£2Z ,_I g ~¥2g |
| N [0 dav] Py 3030
0lg— ZNdd — Zz oll
_ Zie | |
| = rie WALSAS | |
zez—H-1 3HOVO | [3ZINONHONASH ¥€2 8l¢ -ans | | r—
_ HOSIAYIdAH _ ol |1 02
Lez-Th—{ s3unionuls P - A 8 °ddv | 0] v, 301A30
| | = NoLLYTSNwAL SsTuaav . 1 SI0 H~vzz ™ g0z ol
omN(LI AN g vV ddv | e 7
04z} F NdO 7z | [FoNoo v
| JUYMARIS _ 30IA30
2ez—1—1_3HOVO | [3ZINOWHONAS} - vEC %mwmmomn_ SNOLLILYY Y190 _ of
_ 4O SANIHOVI _
b€z P~ SunLonyls 912 N
_ NOILYISNVHL SSTHaaY TNLHIA 80¢ _
OMNI_\:_I NIAN g _
OLz—H 0N AHOWIN HOSSIO0Nd _
- _
z om\\\ 1 (0dD) XTdNOD HOSSIO0Nd TWHLNID 002

U.S. Patent Jul. 5, 2016 Sheet 3 of 18 US 9,384,133 B2

302
300
NATIVE CPU
304 306
310-T—JREGISTERS
ADDRESS MEMORY
|| TRANSLATION EMULATOR INPUT / OUTPUT
31117 STRUCTURES | CobE
312J 338
FIG. 3A
312 MEMORY
e ; °P
INSTRUCTION
352— 1 FETCHING |« INSTCI;RllJJ%?’I'TONS
: ROUTINE :
356
| | 2
| TINSTRUCTION] |
oy NATIVE
354 ——~ TRANSLATION}——»
: COUTINE : INSTRUCTIONS
| ! |
| |
EMULATION
360«/‘{\ CONTROL :
| |_ROUTINE |
|

US 9,384,133 B2

Sheet 4 of 18

Jul. §5,2016

U.S. Patent

G Old
300940 a| [1] [3d0odo
: 0 _
qzos 90 #0s ©20S
00S
¥ ©Old
g cry (07474 j
{ { {
_|E>m SSTaQY Y3 L1g-09
d mﬁm
€97919 /S 9GSV 7S b _ y 0z L 0 97919 IS 0
ad |N | onm [0 u[azr | NiY at| dd| [a[n]] ms VAV g
28V | 62v Sev(vev zev 0cY 8ly wiv (Olv({ 90p OV 207
oS 9ck Zly 80v

U.S. Patent Jul. 5, 2016 Sheet 5 of 18

600~ RCsyncINITIATED ON
LOCAL PROCESSOR

'

SEND RCsync REQUESTS
602~ TO REMOTE PROCESSORS

—‘

_| WAIT FOR CONFIRMATION
604 MESSAGE FROM REMOTE
PROCESSORS

606

CONFIRMATIONS
RECEIVED FROM ALL REMOTE
PROCESSORS?

NO

608—- RCsync COMPLETE

FIG. 6

RCsync REQUEST

'

MARK ALL PENDING R/C
UPDATE REQUESTS;
INITIATE COMMIT OF
PENDING UPDATES

US 9,384,133 B2

RECEVED [620

~—622

&

OPTIONALLY ACCELERATE
WRITEBACK OF MARKED
R/C UPDATE REQUESTS

~—624

626

WAIT UNTIL AT LEAST
ONE R/C UPDATE

WRITTEN TO MEMORY

ALL MARKED
R/C UPDATES WRITTEN
BACK?

628

INDICATE COMPLETION
OF REMOTE RCsync TO
REQUESTOR

~—630

U.S. Patent

Jul. §5,2016

700~

RCsync INITIATED ON
LOCAL PROCESSOR

'

702~

SEND RCsync REQUESTS
TO REMOTE PROCESSORS

1

704 -

WAIT FOR CONFIRMATION
MESSAGE FROM REMOTE

PROCESSORS

706

NO

CONFIRMATIONS

RECEIVED FROM ALL REMOTE

PROCESSORS?

708 —

RCsync COMPLETE

Sheet 6 of 18

FIG. 7

RCsync REQUEST
RECEIVED

'

PUT MARKER IN
STORE QUEUE

'

US 9,384,133 B2

~—720

~—T722

INITIATE WRITING OF R/IC
UPDATES TO PTE

~723

'

OPTIONALLY ACCELERATE
WRITEBACK OF R/C
UPDATE REQUESTS

~ 724

+ 726

WAIT UNTIL MARKER COMES

TO FRONT OF QUEUE

'

INDICATE COMPLETION
OF REMOTE RCsync TO
REQUESTOR

~—728

US 9,384,133 B2

Sheet 7 of 18

Jul. §5,2016

U.S. Patent

028 —~

@31vadn 119 3 ONILYIIANI IHOVD
OL AYLNA 3HOVO (3Lvadn) aay

8 9Old

!

818

918

pLg—] AMOWIN NOXA AMINT

(31vadn 119 ¥ 0STV ATTYNOILAO)
31vadn Lig 9 1Sv31 1V anssl

[}

SNOISSINY3 ILRIM
ANV 31d 4O ALIQITYA MO3HD

]

JHOVO ALY

aN3

JHOLS HLIM 33004d _.\l oi8

!

SS3HAAV VA4 ILNdWOOANY | __ ana

NOILYTISNYYL SS3H0AV 3AIAOHd

AYINT FHOVD
(34ONDSI HO)
JLYANVANI

\“oeg

¢d3aLvadn
119 0 SMOHS AYLNT
JHOVI

908

¢LINISTHd AYINT

ON JHOVD

¥08

dMio0T1(Lvy3 ¥o 910 |~zog
JFHOVD WHO4¥3d

A

NOLLONYLSNI
MOlS3INToTy [008

(o038)

US 9,384,133 B2

Sheet 8 of 18

Jul. §5,2016

U.S. Patent

026~

816~ y.ISva1lv3nss

@3Lvadn Lig ¥ ONILYOIANI IHOVD
0L AYLN3T IHOVYD (3Lvadn) aav

6 Old

|

31vadn g

!

9L6——

SNOISSINY3d 3 LM ATIVNOILJO
ANV 3Ld 40 ALIQINMYAMO3HO

16— AUONTN WOYS ANINT

A

JHOVO JAIIH L3N

NOILOMHLSNI AYOWIA H1IM d33304d _:\l 0L6

!

SS3AAY V3 31NdNOD
ANV NOILVISNVL ——806
$S34Aav 3dINOYd

AYINT
JHOVD (IHONOI
HO) LVAIVYANI

\"ogs

¢a31vadn
1194 SMOHS AY1INT
JHIVI

906

CINISTHd AYLNT

ON JHOV)

06

dNYoO1(Lyd3 ¥o 91L) |~zZ08
JHOVD

A

NOLLONYLSNI 006
AHOW3N 3AIFO3Y

(038)

US 9,384,133 B2

Sheet 9 of 18

Jul. §5,2016

U.S. Patent

0201 —~

8L0L-—1 Igva11vaNnss

@3Lvadn Lig ¥ ONILYDIANI JHOVD
0L AMINT FHOVD (31vadn) aay

ol Old

]

31vadn 119 d

]

910l

SNOISSINY3d LM ATIVNOILHO
ANV 31d 40 ALIAITYAMO3HO

7101] AOWIN NOY AUINT

+

JHOVD NI

AHVSS3O3N 4l NOILLYH3dO JLvalvA _,\J Lol

)

1
NOLLOMNLSNI AYOWZW HLIM 033008d |-—~010}

i

SS34AAvY Tv3d 3LNdWOD
NV NOILVTISNvdL ~——8001
$8340AV 3AINOHd

(TATIvevd
NI) LYAITYA OL AJOWaW
WOY4 31d 3ATINLIN

\ogo1

£031vddn
118 ¥ SMOHS AHIN3
3JHOVO

900}

ON
001
dM001IHIVD 2ool
NOILDNYLSNI
AMOW3W IAT0Ty [~ 0004
NI93g

US 9,384,133 B2

Sheet 10 of 18

Jul. §5,2016

U.S. Patent

Ll "Old
NOILND3X3 LyV.LSTY
any m_Eo_zL:_\,__\,_oo
904 3LVAVANI
TVOOTNNONAd —1O0LL
aNV HN9IANODTY
9Z0LL JLVAIVANI 31VAITVANI | JLVAITVANI |
vo01 V001 01
WHO4¥3d WYO4¥3d WHO4d3d [~ BCOLl
UNOIINOITY OL FHVdTHd QUASIY—~001 |
aNY 3LYOINNWIWOD
HOSSID0Nd UOSSID0Nd ¥0SSIV0Nd H0SS300Nd
JLON3Y JLON3Y JLOWTY V01

US 9,384,133 B2

Sheet 11 of 18

Jul. §5,2016

U.S. Patent

¢l Old

80¢!

)

S3ANNILNOD ONISSIO0Hd ILONTY

S39vd 1=0

$S300¥d ISIMYIHLO
d0 1NO ALI-MM NVO 08TV

S39vd T1V 40 QVILSNI
=0 3AVH LVHL S39vd
J1VAIVANI OL d33aN AINO

~—0Lcl

vocl

SANNLLNOD ONISS3I0Hd 10N

H0SS300™d H0SS300™d H0SS300™d
J1ON3Y J1ON3H J10N3H

oUASDY-—~Z02 L

Ord VA

0l s31d 31vadn

H0SS3004d

OO

//Ioow_‘

US 9,384,133 B2

Sheet 12 of 18

Jul. §5,2016

U.S. Patent

€l OlId

[ARN S

)

SANNILNOD ONISSTO0Ud ILOWTA

§39vd 1=D
$S300%d ISIMYTHLO
HO LNO ALYMNYD OSTY
sIovd V4o avaisn [7HEH
1=0 IAYH LVHL S39Vd
31YAIYANI OL @33N ATNO

oLel

GO€ L —~S3NNILNOD ONISSIO0Hd FLONTY

auksny~—~80€EL

(S39vd =0 ONISSID0Hd ¥O4
3INAIHOS ANV 3LYAITYANI)
O/ IAVIN O1 $31d 31vadn

/(wom_,

coelL

TYNOILJo~00€L
(ouksoy)

US 9,384,133 B2

Sheet 13 of 18

Jul. §5,2016

U.S. Patent

vl 'Ol
9Lyl

)

SANNILNOJ ONISS3O0¥d JLONTY

LM MSIA YOS
=3 HLIM 03XMHVIN S39Vd F1NA3HOS -

839vd TV 40 AYALSNI 1=0 HO |=H JAVH
LVH1 S39vd 31VANVANI OL 033N AINO -
3A08Y S39Vd 31037138 HIAO NVIS @

~—8L¥l

90¥1 ~-S3NNILNOD ONISSIO0Ud 3LON3Y

Yol

UASHY~~0LYL

J1VAITYANI WHOJd3d ANV (LSI133Y4 NO
SV 39Vd YHVI HO) aITYANI OL m@%n_ va .
=04l
JLIMM MSIA HO4 TINAIHIS ATIVNOILO @
(0=Y “69) 1517 3344 HO4 SIDVd ALvAdN

A /(83

P

5 \
FES

covl

TWNOILdO~~00% 1
{ouhsoy)

US 9,384,133 B2

Sheet 14 of 18

Jul. §5,2016

U.S. Patent

Gl Old
9LSL

)

SANNILNOD ONISS300ud ILONTY

LM MSIA HOd NI LLIMM
39 AINOHS HOIHM S§39Vd 31NA3IHIS -

LVHL S39vd 3LVAITYANI 0L Q33N ATNO -
3A08Y 40 S3OVd Q3LOF T3S HIAO NVOS

ouksgy~~0L6G1

S39Vd TIvV 40 AvALSNI =00 L=4JAVH ~—8LSI

9051 ~-S3NNILNOD ONISSIO0Hd 3LOWTY

MOvE JLIMM HOA
JINAIHIS WOVE NALLIMAM 38 ATNOHS I9Vd 41 -
J1VYAITYANI ATIYNOILLAO -
(YW ISIMHTHLO HO) AIYANI
0L 39Vd 13S 'SS3004d SIHL NI @3SN AINO 4I -
$S3004d ONILYNINYAL SIHL 40 39¥d AHAAT HOd »

~80G|

c0s|

TYNOILdO—~ 0051
(ouAsay)

U.S. Patent Jul. 5, 2016 Sheet 15 of 18 US 9,384,133 B2

COMPUTER
PROGRAM
PRODUCT

1600

1604

PROGRAM
CODE LOGIC

COMPUTER
READABLE
STORAGE

MEDIUM
1602

~—

FIG. 16

US 9,384,133 B2

Sheet 16 of 18

Jul. §5,2016

U.S. Patent

0109

Zl 9Old
(8)301n3a
TYNY3LX3
\
109
HILdVAV YHOMLAN @m_o,m“__mm_pz_ AVIdSIa
’
0209 S N
2209 ¥Z09
I\
L-zv09 8109
__ Nmoo -
™-0¥09 1IN
I 3rovo 9NISSID0Hd
IW3LSAS)
JOVHOLS [9109
e AVY
¥£09)\
AHOWIN 0£09
’
8209 HIAMIS WILSAS ¥3LNdWOD [-2109

U.S. Patent Jul. 5, 2016 Sheet 17 of 18 US 9,384,133 B2

US 9,384,133 B2

Sheet 18 of 18

Jul. §5,2016

U.S. Patent

6l OId 0908

4

2IEMJOS PUR SJEMPIEH

aJem)o
_mawwm SWaASAS gugishs sionieg

alemyog uoneoddy @_Bcoo%m_m_ @FUBSX aIMmoaNudy
eseqeieq pomieN BunpomaN abeiojg @8l OSN seuweluep
2909

19 &= maslll -

uogezijenui
sualD suopeoiddy SHOMSN ebeiojg sioneg RCARTHA
IEnJIA BMLA [enuA |EnJIA [NYIA

=] (B oo [
juswabeuepy

Juswjjujn4 pue Juawabeuely [epod Jas Bumwud pue Buuoisinold
Buiuueid vIs [9A9 B0 Buusjely 80083y %909
4

uonebireN

Buissanol
d pue Buiddepy

uonoesuel |

SPEOPHOM
Kisnijeq Emw__mmmcmz
uonean 9[3AdRY
Buissanoid W00 mmm_% E mcm i
SoiAleuy ejeq [ENHIA Juswdoansq
21em)jos

US 9,384,133 B2

1
SYNCHRONIZING UPDATES OF PAGE
TABLE STATUS INDICATORS AND
PERFORMING BULK OPERATIONS

BACKGROUND

One or more aspects relate, in general, to processing within
a multiprocessor computing environment, and in particular
to, synchronizing updates of status indicators in page tables
used by the multiprocessor computing environment.

Page tables are data structures used to store the mapping
between virtual addresses and physical addresses. Virtual
addresses are associated with virtual memory, which is used
to provide the appearance of additional physical memory. As
is known, physical memory is of a defined size and in order to
have the physical memory appear larger than it is, virtual
memory is utilized. The virtual memory is mapped to physi-
cal memory, and techniques are provided to use the virtual
addresses to locate page table entries, which include the
physical addresses used to access physical memory.

Each page table entry includes status indicators used in
managing the entry and/or page of memory associated with
the entry. Further, to optimize performance, cached copies of
the page table entries are maintained in caches, such as trans-
lation lookaside buffers (TLBs). Thus, when a page table
entry is revised, the cached copy is to be updated or invali-
dated, and when the cached copy is updated, the updates are
to be reflected in the page table.

SUMMARY

Shortcomings of the prior art are overcome and advantages
are provided through the provision of a computer program
product for performing operations in a computing environ-
ment. The computer program product includes a computer
readable storage medium readable by a processing circuitand
storing instructions for execution by the processing circuit for
performing a method. The method includes, for instance,
initiating, by a processor of the computing environment, a
synchronization operation to instruct one or more other pro-
cessors of the computing environment to commit pending
updates of one or more status indicators of one or more entries
of'an address translation structure located in memory; receiv-
ing, by the processor, a completion indication by the one or
more other processors indicating completion of the synchro-
nization operation; invalidating, by the processor, based on
receipt of the completion indication from the one or more
other processors, one or more selected entries of one or more
local caches, the one or more selected entries having at least
one status indicator that has been updated; and performing an
operation using one or more entries of the address translation
structure.

Methods and systems relating to one or more embodiments
are also described and claimed herein. Further, services relat-
ing to one or more embodiments are also described and may
be claimed herein.

Additional features and advantages are realized. Other
embodiments and aspects are described in detail herein and
are considered a part of the claimed invention.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

One or more aspects are particularly pointed out and dis-
tinctly claimed as examples in the claims at the conclusion of
the specification. The foregoing and other objects, features,

10

15

20

25

30

35

40

45

50

55

60

65

2

and advantages are apparent from the following detailed
description taken in conjunction with the accompanying
drawings in which:

FIG. 1 depicts one example of a computing environment to
incorporate and use one or more aspects of a synchronization
capability;

FIG. 2 depicts another example of a computing environ-
ment to incorporate and use one or more aspects of a synchro-
nization capability;

FIG. 3 A depicts yet another example of a computing envi-
ronment to incorporate and use one or more aspects of a
synchronization capability;

FIG. 3B depicts further details of the memory of FIG. 3A;

FIG. 4 depicts one example of a page table entry;

FIG. 5 depicts one implementation of a synchronization
instruction;

FIG. 6 depicts one embodiment of synchronization logic;

FIG. 7 depicts another embodiment of synchronization
logic;

FIG. 8 depicts one embodiment of logic associated with a
store operation;

FIG. 9 depicts one embodiment of logic associated with a
memory instruction;

FIG. 10 depicts another embodiment of logic associated
with a memory instruction;

FIG. 11 depicts one example of reconfiguring an address
space;

FIG. 12 depicts one embodiment of making pages read-
only;

FIG. 13 depicts another embodiment of making pages
read-only;

FIG. 14 depicts one embodiment of logic to manage a free
list of memory pages;

FIG. 15 depicts one embodiment of logic to manage
memory based on terminating a process;

FIG. 16 depicts one embodiment of a computer program
product;

FIG. 17 depicts one embodiment of a cloud computing
node;

FIG. 18 depicts on embodiment of a cloud computing
environment; and

FIG. 19 depicts one example of abstraction model layers.

DETAILED DESCRIPTION

In accordance with one or more aspects, a synchronization
capability is provided to synchronize updates to page tables
by forcing pending updates in cached entries to be made
visible in memory (i.e., in in-memory page table entries). As
one example, a synchronization instruction is used that
ensures after the instruction has completed that updates to the
cached entries that occurred prior to the synchronization
instruction are made visible in memory. In the particular
example herein, the synchronization instruction is referred to
as an RCsync instruction, since it is synchronizing updates of
the reference (R) and change (C) indicators of page tables.
However, in other embodiments, other updates to status indi-
cators of page tables may be synchronized using the same
instruction or a different instruction.

In one embodiment, synchronization is used to facilitate
memory management operations, such as bulk operations
used to change a large section of memory to read-only, opera-
tions to manage a free list of memory pages, and/or operations
associated with terminating processes.

Computing environments of different architectures may
incorporate and use one or more aspects of the synchroniza-
tion capability provided herein. For instance, environments

US 9,384,133 B2

3

based on the PowerPC architecture, also referred to as Power
ISA, offered by International Business Machines Corpora-
tion (IBM®) and described in Power ISA™ Version 2.07,
May 3, 2013, hereby incorporated by reference herein in its
entirety, may include one or more aspects, as well as comput-
ing environments of other architectures, such as the z/Archi-
tecture, offered by International Business Machines Corpo-
ration, and described in 7/Architecture—Principles of
Operation, Publication No. SA22-7932-09, 10th Edition,
September 2012, which is hereby incorporated by reference
herein in its entirety.

POWER, POWER ARCHITECTURE, POWERPC,
Z/ARCHITECTURE, IBM, AIX, POWERVM, Z/OS and
Z/VM (referenced herein) are registered trademarks of Inter-
national Business Machines Corporation, Armonk, N.Y.
Other names used herein may be registered trademarks, trade-
marks or product names of International Business Machines
Corporation or other companies.

One example of a computing environment to incorporate
and use one or more aspects of a synchronization capability is
described with reference to FIG. 1. In one example, a com-
puting environment 100 includes a plurality of processors
(central processing unit—CPU) 102, and each processor
includes, for instance, at least one memory management unit
(MMU) 104, one or more address translation structures 105,
one or more caches 106, and a synchronization unit 107 to
provide the synchronization capability described herein.

Each processor 102 is communicatively coupled to a
memory portion 108 (either the same portion or a different
portion) having one or more caches 110, and to an input/
output (I/O) subsystem 112 (again, either the same subsystem
or a different subsystem). [/O subsystem 112 is communica-
tively coupled to external 1/0 devices 114 that may include,
for example, data input devices, sensors and/or output
devices, such as displays.

Memory management unit 104 is used in managing
memory portion 108 including facilitating access to the
memory by providing address translation. To improve
address translation, the memory management unit utilizes
one or more address translation structures 105 including, for
instance, a translation lookaside buffer (TL.B) and a segment
lookaside buffer (SLB), which, in one embodiment, are
located in the MMU. In a further embodiment, the address
translation structures 105 also include an effective to real
address translation (ERAT) structure, which is, e.g., located
in the processor outside the MMU.

A further embodiment of a computing environment to
incorporate and use one or more aspects of a synchronization
capability is depicted in FIG. 2. Referring to FIG. 2, in one
example, a computing environment 200 includes a central
processor complex (CPC) 202 coupled to one or more input/
output (I/0) devices 204 via one or more control units 206.
Central processor complex 202 includes processor memory
208 (ak.a., main memory, main storage, central storage)
coupled to one or more central processors (ak.a., central
processing units (CPUs)) 210 and an I/O subsystem 212, each
of which is further described below.

Processor memory 208 includes one or more virtual
machines 214 (for one example of the PowerPC architecture)
or one or more logical partitions 214 (for one example of the
7/Architecture), and processor firmware 216, which includes
a hypervisor 218 and other processor firmware 220. As used
herein, firmware includes, e.g., the microcode and/or milli-
code of the processor. It includes, for instance, the hardware-
level instructions and/or data structures used in implementa-
tion of higher level machine code. In one embodiment, it
includes, for instance, proprietary code that is typically deliv-

30

35

40

45

4

ered as microcode that includes trusted software or micro-
code specific to the underlying hardware and controls oper-
ating system access to the system hardware.

Each virtual machine or logical partition 214 functions as a
separate system and has one or more applications 222, and
optionally, a resident operating system 224 therein, which
may differ for each virtual machine or logical partition. In one
embodiment, the operating system is the z’VM operating
system, the z/OS operating system, the z/Linux operating
system, the TPF operating system, the AIX operating system,
the Power Linux operating system, the IBM i/OS operating
system, or another operating system offered by International
Business Machines Corporation, Armonk, N.Y.; or another
operating system offered by another company. The virtual
machines are managed by hypervisor 218, such as PowerVM,
offered by International Business Machines Corporation,
Armonk, N.Y.; and the logical partitions are managed by
hypervisor 218, such as the Processor Resource/System Man-
ager (PR/SM), offered by International Business Machines
Corporation, Armonk, N.Y.

Central processors 210 are physical processor resources
assignable to the virtual machines or allocated to the logical
partitions. For instance, each virtual machine or logical par-
tition 214 includes one or more logical processors, each of
which represents all or a share of one or more physical pro-
cessors 210 that may be dynamically allocated to the virtual
machine or partition. A central processor may include a
memory management unit (MMU) 230, one or more address
translation structures 231, at least one cache 232, and a syn-
chronization unit 234 used to provide the synchronization
capability described herein.

Input/output subsystem 212 directs the flow of information
between input/output devices 204 and main memory 208. It is
coupled to the central processing complex, in that it can be a
part of the central processing complex or separate therefrom.
The I/O subsystem relieves the central processors of the task
of communicating directly with the input/output devices and
permits data processing to proceed concurrently with input/
output processing. To provide communications, the I/O sub-
system employs /O communications adapters. There are
various types of communications adapters including, for
instance, channels, /O adapters, PCI cards, Ethernet cards,
Small Computer Storage Interface (SCSI) cards, etc. Further,
the I/O subsystem uses one or more input/output paths as
communication links in managing the flow of information to
or from input/output devices 204.

Another embodiment of a computing environment to
incorporate and use one or more aspects of the synchroniza-
tion capability is described with reference to FIG. 3A. In this
example, a computing environment 300 includes, for
instance, a native central processing unit (CPU) 302, a
memory 304, and one or more input/output devices and/or
interfaces 306 coupled to one another via, for example, one or
more buses 308 and/or other connections. As examples, com-
puting environment 300 may include a PowerPC processor,
or a Power Systems server offered by International Business
Machines Corporation, Armonk, N.Y.; an HP Superdome
with Intel Itanium II processors offered by Hewlett Packard
Co., Palo Alto, Calif.; and/or other machines based on archi-
tectures offered by International Business Machines Corpo-
ration, Hewlett Packard, Intel, Oracle, or others.

Native central processing unit 302 includes one or more
native registers 310, such as one or more general purpose
registers and/or one or more special purpose registers used
during processing within the environment, as well as one or
more address translation structures 311. These registers

US 9,384,133 B2

5

include information that represents the state of the environ-
ment at any particular point in time.

Moreover, native central processing unit 302 executes
instructions and code that are stored in memory 304. In one
particular example, the central processing unit executes emu-
lator code 312 stored in memory 304. This code enables the
computing environment configured in one architecture to
emulate another architecture. For instance, emulator code
312 allows machines based on architectures other than the
7/Architecture, such as PowerPC processors, Power Systems
servers, HP Superdome servers or others, to emulate the
z/Architecture and to execute software and instructions
developed based on the z/Architecture, or allows machines
based on architectures other than the Power Architecture,
such as HP Superdome Servers or others, to emulate the
Power Architecture and to execute software and instructions
developed based on the Power Architecture.

Further details relating to emulator code 312 are described
with reference to FIG. 3B. Guest instructions 350 stored in
memory 304 comprise software instructions (e.g., correlating
to machine instructions) that were developed to be executed
in an architecture other than that of native CPU 302. For
example, guest instructions 350 may have been designed to
execute on a Power Architecture or z/Architecture processor
102, but instead, are being emulated on native CPU 302,
which may be, for example, an Intel Itanium II processor. In
one example, emulator code 312 includes an instruction
fetching routine 352 to obtain one or more guest instructions
350 from memory 304, and to optionally provide local buft-
ering for the instructions obtained. It also includes an instruc-
tion translation routine 354 to determine the type of guest
instruction that has been obtained and to translate the guest
instruction into one or more corresponding native instruc-
tions 356. This translation includes, for instance, identifying
the function to be performed by the guest instruction and
choosing the native instruction(s) to perform that function.

Further, emulator code 312 includes an emulation control
routine 360 to cause the native instructions to be executed.
Emulation control routine 360 may cause native CPU 302 to
execute a routine of native instructions that emulate one or
more previously obtained guest instructions and, at the con-
clusion of such execution, return control to the instruction
fetch routine to emulate the obtaining of the next guest
instruction or a group of guest instructions. Execution of the
native instructions 356 may include loading data into a reg-
ister from memory 304; storing data back to memory from a
register; or performing some type of arithmetic or logic
operation, as determined by the translation routine.

Each routine is, for instance, implemented in software,
which is stored in memory and executed by native central
processing unit 302. In other examples, one or more of the
routines or operations are implemented in firmware, hard-
ware, software or some combination thereof. The registers of
the emulated processor may be emulated using registers 310
of the native CPU or by using locations in memory 304. In
embodiments, guest instructions 350, native instructions 356
and emulator code 312 may reside in the same memory or
may be disbursed among different memory devices.

In implementations, the synchronization capability
described herein may be provided by the CPUs that are per-
forming the emulation, or may be provided by the emulated
software. Various implementations are possible.

The computing environments described above are only
examples of computing environments that can be used. Other
environments, including but not limited to, other environ-
ments with multiple processors, other partitioned environ-

40

45

6

ments, and/or other emulated environments, may be used;
embodiments are not limited to any one environment.

Each of the computing environments, however, uses
aspects of virtual addressing, including data structures
referred to as page tables. As is known, physical memory is of
a defined size and in order to have the physical memory
appear larger than it is, virtual memory is utilized. Virtual
memory is mapped to real memory via, for instance, a hash
page table (HPT) technique to locate page table entries
(PTEs). Each segment of the virtual memory is mapped to a
segment ID (SID) entry identified by an effective segment ID
(ESID). An effective address used by the program includes,
for instance, an ESID, a page portion and a byte portion, and
is used to select an SID entry, which includes the ESID value,
aswell as a virtual segment ID (VSID) value. The VSID value
represents the high-order bits of a virtual address to be used
by a hashing algorithm to search the hash page table. A
hashed value based on the VSID is used to locate a page table
entry (PTE). The page table entry includes an address of a
page of physical memory. In order to improve performance,
once a PTE is found, the page portion of the effective address
and the address of the physical memory page found in the
PTE are stored in a cache structure, such as a translation
lookaside buffer (TLB), such that further accesses to the same
effective address page will “hit” in the TLB and avoid the PTE
search. In other embodiments, other cache structures may be
used instead of or in addition to the TLB to store page table
entries, including but not limited to, an effective to real
address translation (ERAT) structure.

Further details associated with a page table entry are
described with reference to FI1G. 4. Each page table entry 400
maps one virtual number to one real page number. As an
example for the Power ISA architecture, a page table entry
includes the following:

Dword Bit(s) Name Description
0 0:1 B (402) Segment Size
0b00 - 256 MB; 0b01 - 1 TB;
0b10 - 256 TB; Ob11 - reserved
2:56 AVA (404) Abbreviated Virtual Address
57:60 SW (406) Available for software use
61 L (408) Virtual page size
0b0 -4 KB
0b1 - greater than 4 KB (large page)
62 H(410) Hash function identifier
63 V(412) Entry valid (V = 1) or invalid (V = 0)
1 0 PP (414) Page Protection bit 0
2:3 Key (418) KEY bits 0:1
4:43 ARPN (420) Abbreviated Real Page Number
44:51 LP (422) Large page size selector
52:54 Key (424) KEY bits 2:4
55 R 426) Reference bit
56 C(428) Change bit
57:60 WIMG (429) Storage control bits
61 N (430) No-execute page if N =1
62:63 PP (432) Page Protection bits 1:2

The ARPN concatenated with LP ((ARPN||LP), 55 _p) pro-
vides a first portion 442 of a real address 440 and a byte
portion 444 from the effective address provides a second
portion of the real address.

Further details regarding one implementation of page
tables and page table entries are described in Power ISA™
Version 2.07 specification, May 3, 2013, offered by Interna-
tional Business Machines Corporation and incorporated
herein by reference in its entirety.

The use of a hash page table to translate addresses is only
one example of a translation technique. Other address trans-
lation schemes, including those that use a hierarchy of trans-

US 9,384,133 B2

7

lation tables, are described in the following publications:
7/Architecture—Principles of Operation, Publication No.
SA22-7932-09, 10th Edition, September 2012, and Intel Ita-
nium Architecture Software Developer’s Manual Volume 2:
System Architecture, Document Number: 245318, May
2010, each hereby incorporated herein by reference in its
entirety. In one example, for the z/Architecture, the hierarchy
of'tables is referred to as dynamic address translation (DAT)
tables; and for Power ISA, the tables are referred to as radix
tables.

As described herein, a synchronization capability is pro-
vided to synchronize updates to page table entries. One
example of a synchronization instruction, referred to herein
as RCsync, that may be used is described with reference to
FIG. 5. In one implementation, an RCsync instruction 500
includes an operation code 5024, 5025 indicating a synchro-
nization operation; an L field 504 used to indicate a type of
synchronization operation (e.g., =3 indicates an RCsync
operation); and an element barrier (E) field 506, which in this
embodiment is 0. In other embodiments, the RCsync instruc-
tion has its own opcode, rather than having a general opcode
that is used for a variety of sync operations and specitying
RCsync by the L field. Many variations are possible.

One embodiment of synchronization logic using, for
instance, RCsync is described with reference to FIG. 6. In one
embodiment, a plurality of processors are performing this
logic, including a local processor, which is the processor
initiating the synchronization process, and one or more
remote processors that are performing processing responsive
to initiation of the synchronization process.

Referring to FIG. 6, initially, a local processor initiates an
RCsync instruction, STEP 600, which broadcasts an RCsync
request to one or more remote processors, STEP 602. In
embodiments, the RCsync request is broadcast to all proces-
sors in a same logical partition (LPAR), virtual machine (VM)
or other group; to processors using the same address space; or
to all processors of a configuration, as examples. In one
particular example, if the broadcast is sent to all processors, it
is sent with an LPAR id, VM id or other identifier, and if the
processor receiving the request is not part of the LPAR, VM or
other group, then it immediately confirms completion.

Subsequent to broadcasting the requests, the local proces-
sor waits for confirmation from the remote processors that
they completed RCsync processing, STEP 604. In an alterna-
tive embodiment, the local processor checks whether it has
received confirmation either continually or at predefined
intervals. If it has not received confirmation from the remote
processors to which the request was broadcast, INQUIRY
606, then it continues to wait, STEP 604. Otherwise, synchro-
nization is complete, which means that the in-memory page
table entries have been updated to reflect changes (e.g.,
updated R/C indicators) in cached entries (e.g., TLBs), STEP
608.

On each remote processor, the RCsync request is received
from the local processor, STEP 620, and all pending reference
and change (R/C) update requests are marked, STEP 622. For
instance, as a reference and/or change update occurs in the
cache (e.g., the TLB), the pending update is placed on a store
queue for an eventual write to memory. (In further embodi-
ments, the pending R/C updates are stored in a separate R/C
update queue.) Thus, when an RCsync request is received,
each update that came before the RCsync request is marked in
the queue, and commitment of the pending address transla-
tion cache updates to memory is initiated. Further, in one
embodiment, an optional step is performed, in which an
accelerated writeback of the marked R/C update requests is
processed, STEP 624.

10

15

20

25

30

35

40

45

50

55

60

65

8

In a further embodiment, responsive to receiving the
RCsync request and prior to performing the marking, if there
is no queue of pending updates, one is created; and/or pro-
cessing may be performed to ensure the queue is up-to-date.

The remote processor then waits until at least one R/C
update of the store queue is written to memory (e.g., the PTE),
STEP 626. In an alternate implementation, the remote pro-
cessor may constantly check whether the update is written to
memory or check at predefined intervals. After at least one
R/Cupdate is written to memory, the remote processor checks
whether all marked updates are written to memory, INQUIRY
628. If all marked R/C updates are not written to memory,
INQUIRY 628, then the processor continues to wait, STEP
626. Otherwise, completion of the remote RCsync is indi-
cated to the requestor; i.e., the local processor, STEP 630.

In one alternate embodiment, the technique may determine
the number of R/C update entries in a store or other queue in
STEP 622, and waits for the number of counted entries to be
processed in STEP 626.

In yet another alternate embodiment, generation of addi-
tional memory requests to a store or other queue is optionally
halted in STEP 622, and the processor waits until the store or
other queue is empty in STEP 626 prior to indicating comple-
tion of an RCsync request.

In addition to the above, in one embodiment, the local
processor also performs synchronization locally ensuring that
any changes in a locally cached page table (e.g., local TLB)
are written out to memory (e.g., to the in-memory copy of the
PTE).

Another embodiment of synchronization logic using, for
instance, RCsync is described with reference to FIG. 7. In one
embodiment, a plurality of processors are performing this
logic, including a local processor, which is the processor
initiating the synchronization process, and one or more
remote processors that are performing processing responsive
to initiation of the synchronization process.

Referring to FIG. 7, initially, a local processor initiates an
RCsync instruction, STEP 700, which broadcasts an RCsync
request to one or more remote processors (e.g., all of the
remote processors in the system or a subset thereof), STEP
702. The local processor then waits for confirmation from the
remote processors that they completed RCsync processing,
STEP 704. In an alternative embodiment, the local processor
checks whether it has received confirmation either continu-
ally or at predefined intervals. If it has not received confirma-
tion from all the remote processors to which it broadcast the
request, INQUIRY 706, then it continues to wait, STEP 704.
Otherwise, synchronization is complete, STEP 708.

On each remote processor, the RCsync request is received
from the local processor, STEP 720, and instead of marking
each in-flight R/C update request in the store queue, a marker
is placed in the store queue, and then assuming the queue is
processed in order, when the marker comes to the head of the
queue, it knows all of the updates that came before the
RCsync was received were processed, STEP 722.

The queue is processed by initiating the writing of the R/C
updates to the page table, STEP 723. Further, in one embodi-
ment, an optional step is performed, in which an accelerated
writeback of the R/C update requests is processed, STEP 724.

In a further embodiment, responsive to receiving the
RCsync request and prior to performing the marking, if there
is no queue of pending updates, one is created; and/or pro-
cessing may be performed to ensure the queue is up-to-date.

The remote processor then waits until the marker comes to
the front orhead ofthe queue, STEP 726. Based on the marker

US 9,384,133 B2

9

coming to the head of the queue, the remote processor indi-
cates to the requestor (i.e., local processor) completion of the
remote RCsync, STEP 728.

In one alternate embodiment, the technique may determine
the number of entries in a store or other queue in STEP 722,
and waits for the number of counted entries to be processed in
STEP 726.

In yet another alternate embodiment, generation of addi-
tional memory requests to a store or other queue is optionally
halted in STEP 722, and the processor waits until the store or
other queue is empty in STEP 726 prior to indicating comple-
tion of an RCsync request.

Again, in addition to the above, in one embodiment, the
local processor also performs synchronization locally ensur-
ing that any changes in a locally cached page table (e.g., local
TLB) are written out to memory (e.g., to the in-memory copy
of the PTE).

In one aspect, RCsync ensures that the remote reference
and change (R/C) updates that are pending have been com-
pleted on all the remote nodes determined to receive the
RCsync request. In one implementation, when RCsync is
issued, the R/C updates corresponding to a state of memory
prior to the RCsync have been completed. After completion of
RCsync, for each page table entry, only page table entry
updates are possible that reflect the value of the page table
entry at the time at or after the RCsync. Thus, if a page table
entry was set to read-only priorto RCsync, but was previously
write-enabled, RCsync forces any C indicator settings in the
page table entry, and no further changes to the C indicator are
made after completion of RCsync, since the new PTE value
prohibits it. However, if the C indicator is set in a TLB
indicating a write has occurred, future writes using the TLB
are possible until the TL.B is invalidated or updated. Similarly,
if a PTE is set to invalid, no R/C updates occur after the
RCsync operation, since the new PTE value prohibits it.

In accordance with existing memory systems, when a
cached TLB entry transitions from being cached for allowing
reads to allowing writes, the page table entry (or its valid
and/or write permissions) are read and updated prior to add-
ing the TLB entry with the write permission. Thus, TLB
entries do not trigger C indicator updates once the in-memory
PTE entry has been updated to invalid and/or to not have write
permissions.

One embodiment of logic associated with a store operation
and the use of cached entries in the wake of using RCsync is
described with reference to FIG. 8. RCsync may be per-
formed before or after a store operation, and therefore, this
logic is used regardless of when RCsync is performed.

Referring to FIG. 8, initially, a processor receives a store
instruction, in which data is to be written to a particular page
in memory, STEP 800. Based on receiving the store instruc-
tion, the processor performs a lookup in one or more address
translation structures, such as a translation lookaside buffer
(TLB) or effective address to real address translation struc-
ture (ERAT), to determine whether a translation entry corre-
sponding to the page has been cached, STEP 802. If a cache
entry, such as a TLB and/or ERAT entry, is present, INQUIRY
804, then a further determination is made as to whether the
cache entry shows the change indicator as updated (e.g., C=1)
indicating that this page has been written to previously,
INQUIRY 806. Ifitis set (e.g., C=1), then the entry is used in
address translation to provide a real address, STEP 808, and
processing proceeds with the store, STEP 810.

Returning to INQUIRY 804, if, however, a cache entry is
not present, then a cache entry corresponding to the present
page translation is created by retrieving at least one relevant
page table entry from memory, STEP 814. Thereafter, the

10

15

20

25

30

35

40

45

50

55

60

65

10

validity of the page table entry and the write permissions are
checked to obtain the most up-to-date read/write status, STEP
816. Assuming the page table entry is valid and that a write
permission has been granted, the change indicator in the
cache entry corresponding to the present page translation
reflects this, e.g., C=1 (optionally, the reference indicator
and/or other indicators are also set in the TLB), STEP 818. In
one embodiment, a write update is entered in a store queue to
update at least the C bit to indicate that the present page has
been modified, i.e., C=1.

The updated cache entry is then added to one or more
caches (e.g., TLB and/or ERAT), STEP 820, and processing
continues at STEP 808. However, in the above processing, if
either the page table entry is invalid or a write permission is
not granted, the store does not proceed and, optionally, an
error is presented.

Returning to INQUIRY 806, if the cache entry does not
show the change indicator as set for a write, then the cache
entry is invalidated (e.g., V indicator in the cache entry is set
to 0 or the entry is deleted) or ignored, STEP 830, and pro-
cessing continues with STEP 814.

In addition to the above store processing, other processing
may also be performed before or after an RCsync instruction.
That is, memory instructions (e.g., load, store, etc) may be
issued before or after an RCsync. In one particular example,
in implementations that allow the prefetching of cache
entries, such as TLB or ERAT entries, logic is performed to
check the reference indicator to confirm the validity of a
cache entry on first use. In other embodiments, TLB entries
are not prefetched prior to their first use to perform a memory
address translation corresponding to a memory instruction.

One embodiment of logic to process a memory instruction
is described with reference to FIG. 9. In one example, this
logic is used if prefetching of cache entries (e.g., TLB entries,
ERAT entries, etc.) is allowed without setting the reference
indicator (e.g., R=1).

Referring to FIG. 9, initially, a processor receives a
memory instruction that is to access a selected page of
memory, STEP 900. Based on receiving the memory instruc-
tion, the processor performs a look-up in a cache, such as a
TLB or ERAT, to determine whether an address translation
corresponding to the page to be accessed has previously been
cached, STEP 902. If an entry corresponding to the page of
memory to be accessed is present in the cache, INQUIRY
904, then a further determination is made as to whether the
cache entry indicates that the reference indicator is updated
(e.g., R=1) indicating that this page has been previously
accessed, INQUIRY 906. If it does indicate that the reference
indicator is set, then the cache entry is used to perform address
translation and to compute a real address to be used for the
memory access, STEP 908. Processing then proceeds with
the memory instruction, STEP 910.

Returning to INQUIRY 904, if a cache entry is not present,
then a cache entry is created by retrieving the relevant page
table entry from memory, STEP 914. Thereafter, the validity
of the page table entry, and optionally, the write permissions
if the memory instruction is a store instruction, are checked to
obtain the most up-to-date status, STEP 916. Assuming the
page table entry is valid, the reference indicator is updated,
e.g., R=1 (and optionally, the change indicator and/or other
indicators of the page table entry), STEP 918. In at least one
embodiment, a write update is entered in a store queue to
update at least the R bit to indicate that the present page has
been modified, i.e., R=1. In another embodiment, responsive
to a store operation being performed, C=1 may also be
updated simultaneously.

US 9,384,133 B2

11

The updated cache entry corresponding to the address
translation for the present page address is then added to one or
more caches (e.g., TLB and/or ERAT) and the reference indi-
cator (and/or optionally, one or more other indicators) is
indicated as updated, STEP 920. Processing then continues at
STEP 908. However, in the above processing, if the page table
entry is invalid, the memory instruction does not proceed and,
optionally, an error is presented.

Returning to INQUIRY 906, if the cache entry does not
show the reference indicator as set, then the cache entry is
invalidated or ignored, STEP 930, and processing continues
with STEP 914.

Another embodiment of logic associated with processing a
memory instruction is described with reference to FIG. 10. In
one example, this logic is used if prefetching of cache entries
(e.g., TLB entries, ERAT entries, etc.) is allowed without
setting the reference indicator (e.g., R=1).

Referring to FIG. 10, initially, a processor receives a
memory instruction that is to access a selected page of
memory, STEP 1000. Based on receiving the memory
instruction, the processor performs a look-up in a cache, such
as a TLB or ERAT, to determine whether the page to be
accessed has previously been cached, STEP 1002. If an entry
corresponding to the page of memory to be accessed is
present in the cache, INQUIRY 1004, then a further determi-
nation is made as to whether the cache entry indicates that the
reference indicator is updated (e.g., R=1) indicating that this
page has been previously accessed, INQUIRY 1006. Ifit does
indicate that the reference indicator is set, then the cache entry
is used to perform address translation and to compute a real
address to be used for the memory access, STEP 1008. Pro-
cessing then proceeds with the memory instruction, STEP
1010. Further, in one embodiment, the operation is validated,
if desired, STEP 1012.

Returning to INQUIRY 1004, if a cache entry is not
present, then a cache entry is created by retrieving the relevant
page table entry from memory, STEP 1014. Thereafter, the
validity of the page table entry, and optionally, the write
permissions if the memory instruction is a store instruction,
are checked to obtain the most up-to-date status, STEP 1016.
Assuming the page table entry is valid, the reference indicator
is updated, e.g., R=1 (and optionally, the change indicator
and/or other indicators of the page table entry), STEP 1018.

The updated cache entry is then added to one or more
caches (e.g., TLB and/or ERAT) and the reference indicator
(and/or optionally, one or more other indicators) is indicated
as updated, STEP 1020. Processing then continues at STEP
1008. However, in the above processing, if the page table
entry is invalid, the memory instruction does not proceed and,
optionally, an error is presented.

Returning to INQUIRY 1006, if the cache entry does not
show the reference indicator as updated, then the page table
entry is retrieved from memory to be used in validation,
which proceeds in parallel with one or more of STEPs 1008
and 1010, which use a cached entry to perform processing
steps in parallel with a concurrent validation of a page entry,
STEP 1030. For instance, if the cache entry does not show the
reference indicator as updated, the processor initiates a par-
allel validation (which would subsume STEPs 1014, 1016,
1018, 1020, and in parallel perform STEPs 1008 and 1010.
Then, if this was a valid entry, processing should be validated
(i.e. the work done in STEPs 1008 and 1010 should be
allowed to complete). Processing then continues to STEP
1012, where the operation is validated if the cached entry
located in STEP 1002 is enabled.

In accordance with one or more aspects, a processor per-
forms a synchronization operation to force pending updates

20

40

45

50

65

12

to page table entries sooner than later. That is, in weakly
ordered memory systems, the page table entries may eventu-
ally be updated, but there is no guarantee as to the time in
which they are updated. Thus, the synchronization processing
forces the updates based on receipt of the synchronization
instruction. Further, in one implementation, the synchroniza-
tion is performed without requiring invalidation of individual
cache and/or page table entries.

There are many situations in which such a synchronization
process may be used, including bulk operations performed on
memory pages, such as reconfiguration, managing a free list
of memory pages, and performing teardown when a process
terminates, as examples. The synchronization is performed to
force updates of the page table entries, and thus, providing
selectiveness in entries to be, e.g., invalidated (e.g., C=1),
rather than invalidating all entries.

One example situation in which the synchronization opera-
tion may be used is in reconfiguring an address space, as
described with reference to FIG. 11. Referring to FIG. 11,
initially, a local processor issues an RCsync operation to force
the updating of page table entries with any pending R/C
updates (or other status updates in other examples), STEP
1100. Thereafter, each remote processor that receives the
RCsync request from a local processor performing an
RCsync instruction performs a synchronization operation, as
described herein. In parallel to an ongoing RCsync operation,
STEP 1100, a local processor requests each remote processor
to perform bulk invalidation of a plurality of page table entries
in one or more caches corresponding to the remote processor
using, for instance, a TLBIEL instruction or a local IPTE
instruction (e.g., an IPTE instruction when the local TLB
clearing facility is installed and the LC bit in the M, field is
one), STEPs 1102a-1102¢. As examples, the invalidating of
an entry includes setting a valid indicator in the entry to a
particular value (e.g., V=0); deleting an entry; or otherwise
making the entry unavailable; etc.

Subsequent to completing the remote RCsync operation
requested by the local processor, each remote processor sends
an indication, STEP 1103, to the local processor indicating
completion of the RCsync operation, regardless of whether
the local invalidate on the respective remote processor is
complete. Based on the local processor receiving an indica-
tion that the remote processors have completed the RCsync
synchronization operation, the local processor proceeds with
reconfiguring the address space by updating one or more page
table entries in memory to reflect the state of a reconfigured
address space and performing a local invalidation operation
onthe processor’s cache entries, STEP 1104, to ensure that no
C=stale cache entries corresponding to the address space
prior to reconfiguration are stored on the local processor.
When remote processors complete invalidation, remote pro-
cessors wait for address reconfiguration to complete, e.g., via
STEP 1106. Thereafter, execution may be restarted on the
local and remote processors, STEP 1106. By performing
RCsync, in one embodiment, the local processor need not
wait until the local invalidations on the remote processors
have completed, but instead, may proceed in parallel after
receiving an indication that the remote processors completed
the RCsync synchronization processing, and hence page table
entries stored in memory contain the most current state of R
and C status indicators, as well as optionally other informa-
tion contained in a PTE that is updated by remote processors
and may be synchronized with an RCsync, in accordance with
one or more aspects.

In one particular example, a synchronization operation
may be used to reconfigure an address space to correspond to
a read-only address space. In accordance with one embodi-

US 9,384,133 B2

13

ment, the pages that have been written to are known, so that
they can be tracked, written to disk, etc. As specific examples,
an address space is made read-only for techniques, such as
partition migration, and use of copy-on-write techniques.
Copy-on-write is used, for instance, for a fork() operation in
Unix operating systems, as well as for other operations. Inone
such embodiment, copy-on-write is used to copy a large
memory region without incurring a long initial latency asso-
ciated with duplicating all memory pages corresponding to
such a region. For instance, with a copy-on-write technique,
an entire memory, as one example, is made read-only allow-
ing a plurality of processes to share the memory pages. Then,
when a particular process wishes to write to a particular page
of'its copy of the memory space, the system functions imple-
menting copy-on-write copy that page and make it writable,
prior to allowing the process to proceed to write to such a
page.

One embodiment of the logic to make pages read-only is
described with reference to FIG. 12. In one example, the local
processor (i.e., the one that wants to make the address space
read-only) updates the page table entries corresponding to the
memory pages to be made read-only to indicate read-only
(e.g., setthe page protection bits of FIG. 4 marked pp, i.e., bits
0, 62 and 63 of the second doubleword of a page table entry,
to disallow writes to a subject page), STEP 1200, and then
executes a synchronization operation, such as RCsync, to
synchronize (e.g., force out) all the reference and change
indicators for which updates may be in-flight up to the point
of issuing the RCsync operation, STEP 1202.

The remote processors receive the RCsync operation, pro-
cess it, as described above, STEP 1204, and indicate comple-
tion, STEP 1206. Other remote processing also continues,
STEP 1208.

The local processor receives the completion indications,
and after the synchronization operation is completed by the
remote processors, the local processor has an accurate list of
the remotely stored-into pages (e.g., those with C=1). Further,
the remote processors cannot use new pages for a store opera-
tion because the page table entries were set to read-only, and
thus, fail the change indicator checking technique described,
for instance, in FIG. 8.

The local processor now invalidates the address translation
cache entries corresponding to page table entries that have a
set change indicator (e.g., C=1), STEP 1210. For instance, the
local processor invalidates its own local entries and broad-
casts an indication to the remote processors instructing the
remote processors to invalidate their own cached entries.
These cached page table entries correspond to all pages that
may still be write-updated by remote processors after the
update in STEP 1200 (since attempts to store into other pages
will fail the technique of FIG. 8), and represents a smaller set
of pages to be invalidated than would have to be invalidated
without the presence of accurate R/C information in all page
table entries. These cached page table entires may be invali-
dated using either broadcast global hardware-invalidate
instructions, such as TLBIE or IPTE, or a software sequence
that includes broadcasting a single bulk invalidate request
(e.g., using an inter-processor-interrupt facility) in conjunc-
tion with software-coordinated local cache invalidation on
each remote processor, e.g., using TLBIEL instructions or
local IPTE instructions responsive to a list of pages to be
invalidated. Additionally, pages that have a set change indi-
cator are processed, such as writing the pages to disk, etc.

In another embodiment, a first page table entry update step
corresponding to STEP 1200 updates all page tables entries to
be invalid prior to performing an RCsync, and a second pro-
cessing STEP 1210 updates page table entries to read-only, so

10

15

20

25

30

35

40

45

50

55

60

65

14

as to further synchronize simultaneous updates to page table
entries being performed by remote processors responsive to
an RCsync.

Another embodiment of the logic to make pages read-only
is described with reference to FIG. 13. In one example, the
local processor (i.e., the one that wants to make the address
space read-only) issues a first synchronization operation,
such as an RCsync instruction to the remote processors, STEP
1300. The remote processors receive the synchronization
operation and process it, as described above, STEP 1302, and
then, send indications indicating completion, STEP 1304.
Further, processing at the remote processors continues, STEP
1305. (In another embodiment, this first synchronization
operation is not performed, as shown in FIG. 12.)

Based on receiving completion indications from the
remote processors for the synchronization operation, the
local processor updates the page table entries corresponding
to the memory pages to be made read-only to indicate read-
only, as well as invalidates cache entries that have a set change
indicator (e.g., C=1), as described above, and schedules pro-
cessing for those pages, STEP 1306. In one embodiment of
processing of modified pages, modified pages are written to
external storage (e.g., such as a hard disk or flash memory).
Thereafter, a second synchronization operation, such as
RCsync, is issued by the local processor to synchronize (e.g.,
force out) all remaining page table R and C status updates
having occurred since an initial RCsync, STEP 1300, that
were in-flight up to the point of issuing the second RCsync
operation, STEP 1308.

The remote processors receive the RCsync operation and
process it, as described above, STEP 1310, and indicate
completion, STEP 1311. Other remote processing also con-
tinues, STEP 1312. After the second synchronization opera-
tion is completed by the remote processors, the local proces-
sor has an accurate list of the remotely stored-into pages (e.g.,
C=1). Further, the remote processors cannot use new pages
for stores because the page table entries were set to read-only,
and thus, fail the change indicator checking technique.

The local processor invalidates the cache entries that have
a set change indicator (e.g., C=1), as described herein, STEP
1314. In accordance with one or more aspects, this second
processing step, STEP 1314, corresponds to a processing of
any pages having been modified between the first and the
second RCsync. In this embodiment, the majority of updates
may be initiated during STEP 1306 and invalidations and
other processing (such as 1/O operations corresponding to
writing modified pages to external storage) may be over-
lapped with the processing of RCsync, STEP 1308. Addition-
ally, pages that have a set change indicator are processed, such
as writing the pages to disk, etc.

Again, invalidations may be performed either by executing
TLBIE or IPTE in conjunction with a hardware broadcast of
invalidation requests, or by a software synchronized local
invalidation being performed on each of the local and remote
processors.

In at least one alternate embodiment, STEP 1306 indicates
in-memory page table entries to be invalidated by setting a
valid indicator to invalid, and a second STEP 1314 updates
page table entries to read-only state, e.g., in order to further
synchronize page table entry updates.

In other embodiments of making pages read-only, the page
table entries may be invalidated first, and then the entries may
be marked read-only.

Another use of a synchronization operation is to update a
free list of memory pages. In systems that use virtual memory,
the operating system is to maintain a free list of memory
pages, which is used when a page is to be paged in, a buffer is

US 9,384,133 B2

15

to be allocated, or a new page is requested by an application,
as examples. A goal in maintaining a free list is to place rarely
used pages on the free list. Thus, the operating system looks
for pages that have R=0 or examines additional reference
information for finer-grain processing. In one embodiment,
the additional information corresponds to a time stamp of a
last reference (e.g., a read or write access to a page), or a bit
vector indicating whether a reference has occurred in each of
aplurality of time slices, each bit of a bit vector corresponding
to one such time slice.

One embodiment of using a synchronization operation to
manage a free list is described with reference to FIG. 14.
Initially, a local processor (e.g., the processor that is manag-
ing the free list) issues a first synchronization operation, such
as RCsync, in order to obtain the most up-to-date informa-
tion, STEP 1400. The remote processors that receive the
synchronization request process it, as described above, STEP
1402, and then indicate completion, STEP 1404. Addition-
ally, remote processing continues, STEP 1406. (In another
embodiment, this first synchronization operation is not per-
formed.)

Based on receiving completion indications from all of the
remote processors that were to perform the synchronization
operation, the local processor performs a number of tasks,
STEP 1408. These tasks include, for instance, identifying one
or more pages for the free list, such as those pages in which
the reference indicator is not set (e.g., R=0); optionally,
schedule one or more pages for a disk write, if the change
indicator is set (e.g., C=1); set one or more pages in the page
table entry to invalid (or mark them as on the free list); and/or
perform invalidation for any cache address translation entries
corresponding to the pages that need to be invalidated, as
described herein (e.g., using IPTE, TLBIE).

Thereafter, the local processor issues a second synchroni-
zation operation, such as RCsync, to the remote processors,
STEP 1410. The remote processors process the second syn-
chronization operation, STEP 1412, and indicate completion,
STEP 1414. Further, other remote processing continues,
STEP 1416.

After the synchronization operation is completed by the
remote processors that are to perform the synchronization
operation, the local processor has an accurate list of the
remotely used pages. The local processor now invalidates
only the page table entries and/or the cache entries that have
a set change or reference indicator (e.g., C=1 or R=1), as
described herein, STEP 1418. This is a clean-up for pages that
changed from the first synchronization operation to the sec-
ond synchronization operation. In one embodiment, only
pages that are known to have been referenced by one or more
processors and to be possibly in one or more translation
caches need to be invalidated, thereby reducing the need for
page invalidations. Additionally, pages that have a set change
indicator are processed, such as writing the pages to disk, etc.

Another example in which synchronization processing is
used is in a process teardown, which occurs when a process is
terminated. In a process teardown, all of the pages of that
process are to be invalidated or placed on a free list, if this
process is the only user. Also, in a process teardown, if a page
is to be written back, write back processing is initiated.

One embodiment of using a synchronization operation to
perform a process teardown is described with reference to
FIG. 15. Initially, a local processor (e.g., the processor that is
performing the process teardown) issues a first synchroniza-
tion operation, such as RCsync, in order to obtain the most
up-to-date information, STEP 1500. The remote processors
that receive the synchronization request process it, as
described above, STEP 1502, and then indicate completion,

10

15

20

25

30

35

40

45

50

55

60

65

16
STEP 1504. Additionally, remote, processing continues,
STEP 1506. (In another embodiment, this first synchroniza-
tion operation is not performed.)

Based on receiving completion indications from all of the
remote processors that were to perform the synchronization
operation, the local processor performs a number of tasks,
STEP 1508. These tasks include, for instance, for each page
of'the process, if the page is only used in the process, then to
set the page to invalid; optionally, perform invalidation of
cached address translations for any pages that need to be
invalidated, as described herein (e.g., using IPTE, TLBIE);
and if a page is to be written back to disk, initiate a write back
operation.

Thereafter, the local processor issues a second synchroni-
zation operation, such as RCsync, to the remote processors,
STEP 1510. The remote processors process the second syn-
chronization operation, STEP 1512, and indicate completion,
STEP 1514. Further, other remote processing continues,
STEP 1516.

After the synchronization operation is completed by the
remote processors that are to perform synchronization, the
local processor has an accurate list of the remotely used
pages. The local processor now invalidates only the page table
entries and/or the cache entries that have a set change or
reference indicator (e.g., C=1 or R=1), STEP 1518, as
described herein. This is a clean-up for pages that changed
from the first synchronization operation to the second syn-
chronization operation. Additionally, pages that have a set
change indicator are processed, such as writing the pages to
disk, etc.

Described in detail herein is a synchronization capability
that may be used by a number of techniques to obtain the most
up-to-date status information for page table entries. In one
example, a synchronization operation uses an RCsync
instruction that ensures all updates to dynamically updated
portions of a page table entry that have occurred prior to the
execution of RCsync in a multiprocessor system have com-
pleted. In one embodiment, a single RCsync ensures all types
of updates have completed; and in another embodiment,
RCsync offers additional parameters, to specity certain fields
(e.g., update C fields, but not R, etc.). Many variations are
possible.

In further embodiments, RCsync can be indicated by
executing a sequence of instructions, and/or by writing one or
more control registers. Other variations are also possible.

In one embodiment, RCsync updates all page table entries
that are to be updated based on pending updates in the cache
entries identified at the time of receiving RCsync using a
single instruction and without invalidating the cache entries
(i.e., while allowing cache entries to remain valid).

Current approaches to receive up-to-date R/C indicators
require an invalidate (e.g., TLBIE) per PTE. However, in
accordance with one or more aspects, a single broadcast can
update R/C (and/or other PTE status information) and accel-
erate processing. For instance, in a single round trip to each
remote processor, all R/C updates that are pending prior to
performance of the RCsync are committed to memory. This
synchronization processing can be used in conjunction with
interprocessor interrupt (IPI)-based TLB invalidation that
uses single software requests to perform local TLB invali-
dates.

In accordance with one or more aspects, a synchronization
process is provided that enables a computing environment
with a weakly ordered memory having deferred R/C updates
(i.e., computing environments configured without coherent

US 9,384,133 B2

17

updates in that updates are not guaranteed in any specific
amount of time) to perform, for instance, bulk demotions,
invalidations, etc. locally.

Although in a number of examples herein, it is a page table
being updated, one or more aspects may apply to other
address translation structures. Further, other units of memory,
other than pages, may be accessed and/or stored into. The use
of pages and page tables are just examples. Further, a page of
memory may be any size including 4K, or greater or less than
4K.

Referring to FIG. 16, in one example, a computer program
product 1600 includes, for instance, one or more non-transi-
tory computer readable storage media 1602 to store computer
readable program code means, logic and/or instructions 1604
thereon to provide and facilitate one or more embodiments.

The present invention may be a system, a method, and/or a
computer program product. The computer program product
may include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present inven-
tion.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an elec-
tronic storage device, a magnetic storage device, an optical
storage device, an electromagnetic storage device, a semicon-
ductor storage device, or any suitable combination of the
foregoing. A non-exhaustive list of more specific examples of
the computer readable storage medium includes the follow-
ing: a portable computer diskette, a hard disk, a random
access memory (RAM), aread-only memory (ROM), an eras-
able programmable read-only memory (EPROM or Flash
memory), a static random access memory (SRAM), a por-
table compact disc read-only memory (CD-ROM), a digital
versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised
structures in a groove having instructions recorded thereon,
and any suitable combination of the foregoing. A computer
readable storage medium, as used herein, is not to be con-
strued as being transitory signals per se, such as radio waves
or other freely propagating electromagnetic waves, electro-
magnetic waves propagating through a waveguide or other
transmission media (e.g., light pulses passing through a fiber-
optic cable), or electrical signals transmitted through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler instruc-
tions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or either
source code or object code written in any combination of one
or more programming languages, including an object ori-
ented programming language such as Smalltalk, C++ or the

10

15

20

25

30

35

40

45

50

55

60

65

18

like, and conventional procedural programming languages,
such as the “C” programming language or similar program-
ming languages. The computer readable program instructions
may execute entirely on the user’s computer, partly on the
user’s computer, as a stand-alone software package, partly on
the user’s computer and partly on a remote computer or
entirely on the remote computer or server. In the latter sce-
nario, the remote computer may be connected to the user’s
computer through any type of network, including a local area
network (LAN) or a wide area network (WAN), or the con-
nection may be made to an external computer (for example,
through the Internet using an Internet Service Provider). In
some embodiments, electronic circuitry including, for
example, programmable logic circuitry, field-programmable
gate arrays (FPGA), or programmable logic arrays (PLA)
may execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, in order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be pro-
vided to a processor of a general purpose computer, special
purpose computer, or other programmable data processing
apparatus to produce a machine, such that the instructions,
which execute via the processor of the computer or other
programmable data processing apparatus, create means for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks. These computer read-
able program instructions may also be stored in a computer
readable storage medium that can direct a computer, a pro-
grammable data processing apparatus, and/or other devices to
function in a particular manner, such that the computer read-
able storage medium having instructions stored therein com-
prises an article of manufacture including instructions which
implement aspects of the function/act specified in the flow-
chart and/or block diagram block or blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data processing
apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer implemented
process, such that the instructions which execute on the com-
puter, other programmable apparatus, or other device imple-
ment the functions/acts specified in the flowchart and/or
block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por-
tion of instructions, which comprises one or more executable
instructions for implementing the specified logical function
(s). In some alternative implementations, the functions noted
in the block may occur out of the order noted in the figures.
For example, two blocks shown in succession may, in fact, be
executed substantially concurrently, or the blocks may some-
times be executed in the reverse order, depending upon the
functionality involved. It will also be noted that each block of
the block diagrams and/or flowchart illustration, and combi-

US 9,384,133 B2

19

nations of blocks in the block diagrams and/or flowchart
illustration, can be implemented by special purpose hard-
ware-based systems that perform the specified functions or
acts or carry out combinations of special purpose hardware
and computer instructions.

In addition to the above, one or more aspects may be
provided, offered, deployed, managed, serviced, etc. by a
service provider who offers management of customer envi-
ronments. For instance, the service provider can create, main-
tain, support, etc. computer code and/or a computer infra-
structure that performs one or more aspects for one or more
customers. In return, the service provider may receive pay-
ment from the customer under a subscription and/or fee
agreement, as examples. Additionally or alternatively, the
service provider may receive payment from the sale of adver-
tising content to one or more third parties.

In one aspect, an application may be deployed for perform-
ing one or more embodiments. As one example, the deploying
of an application comprises providing computer infrastruc-
ture operable to perform one or more embodiments.

As a further aspect, a computing infrastructure may be
deployed comprising integrating computer readable code into
a computing system, in which the code in combination with
the computing system is capable of performing one or more
embodiments.

As yet a further aspect, a process for integrating computing
infrastructure comprising integrating computer readable code
into a computer system may be provided. The computer sys-
tem comprises a computer readable medium, in which the
computer medium comprises one or more embodiments. The
code in combination with the computer system is capable of
performing one or more embodiments.

Although various embodiments are described above, these
are only examples. For example, computing environments of
other architectures can be used to incorporate and use one or
more embodiments. Further, different instructions, instruc-
tion formats, instruction fields and/or instruction values may
be used. Yet further, synchronization may be performed in
other ways. Many variations are possible.

Further, other types of computing environments can benefit
and be used. As an example, a data processing system suitable
for storing and/or executing program code is usable that
includes at least two processors coupled directly or indirectly
to memory elements through a system bus. The memory
elements include, for instance, local memory employed dur-
ing actual execution of the program code, bulk storage, and
cache memory which provide temporary storage of at least
some program code in order to reduce the number of times
code must be retrieved from bulk storage during execution.

Input/Output or 1/O devices (including, but not limited to,
keyboards, displays, pointing devices, DASD, tape, CDs,
DVDs, thumb drives and other memory media, etc.) can be
coupled to the system either directly or through intervening
1/0O controllers. Network adapters may also be coupled to the
system to enable the data processing system to become
coupled to other data processing systems or remote printers or
storage devices through intervening private or public net-
works. Modems, cable modems, and Ethernet cards are just a
few of the available types of network adapters.

In a further embodiment, one or more aspects relate to
cloud computing. It is understood in advance that although
this disclosure includes a detailed description on cloud com-
puting, implementation of the teachings recited herein are not
limited to a cloud computing environment. Rather, embodi-
ments of the present invention are capable of being imple-
mented in conjunction with any other type of computing
environment now known or later developed.

20

25

30

40

45

55

20

Cloud computing is a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g. networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be rap-
idly provisioned and released with minimal management
effort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models.

Characteristics are as follows:

On-demand self-service: a cloud consumer can unilaterally
provision computing capabilities, such as server time and
network storage, as needed automatically without requiring
human interaction with the service’s provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that pro-
mote use by heterogeneous thin or thick client platforms (e.g.,
mobile phones, laptops, and PDAs).

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There is
a sense of location independence in that the consumer gener-
ally has no control or knowledge over the exact location of the
provided resources but may be able to specify location at a
higher level of abstraction (e.g., country, state, or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale out
and rapidly released to quickly scale in. To the consumer, the
capabilities available for provisioning often appear to be
unlimited and can be purchased in any quantity at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capability
at some level of abstraction appropriate to the type of service
(e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and
reported providing transparency for both the provider and
consumer of the utilized service.

Service Models are as follows:

Software as a Service (SaaS): the capability provided to the
consumer is to use the provider’s applications running on a
cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as a
web browser (e.g., web-based email). The consumer does not
manage or control the underlying cloud infrastructure includ-
ing network, servers, operating systems, storage, or even
individual application capabilities, with the possible excep-
tion of limited user-specific application configuration set-
tings.

Platform as a Service (PaaS): the capability provided to the
consumer is to deploy onto the cloud infrastructure con-
sumer-created or acquired applications created using pro-
gramming languages and tools supported by the provider. The
consumer does not manage or control the underlying cloud
infrastructure including networks, servers, operating sys-
tems, or storage, but has control over the deployed applica-
tions and possibly application hosting environment configu-
rations.

Infrastructure as a Service (IaaS): the capability provided
to the consumer is to provision processing, storage, networks,
and other fundamental computing resources where the con-
sumer is able to deploy and run arbitrary software, which can
include operating systems and applications. The consumer
does not manage or control the underlying cloud infrastruc-
ture but has control over operating systems, storage, deployed
applications, and possibly limited control of select network-
ing components (e.g., host firewalls).

US 9,384,133 B2

21

Deployment Models are as follows:

Private cloud: the cloud infrastructure is operated solely for
an organization. It may be managed by the organization or a
third party and may exist on-premises or off-premises.

Community cloud: the cloud infrastructure is shared by
several organizations and supports a specific community that
has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist on-pre-
mises or off-premises.

Public cloud: the cloud infrastructure is made available to
the general public or a large industry group and is owned by
an organization selling cloud services.

Hybrid cloud: the cloud infrastructure is a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standardized
or proprietary technology that enables data and application
portability (e.g., cloud bursting for loadbalancing between
clouds).

A cloud computing environment is service oriented with a
focus on statelessness, low coupling, modularity, and seman-
tic interoperability. At the heart of cloud computing is an
infrastructure comprising a network of interconnected pro-
CeSSOrs.

Referring now to FIG. 17, a schematic of an example of a
cloud computing processor is shown. Cloud computing pro-
cessor 6010 is only one example of a suitable cloud comput-
ing processor and is not intended to suggest any limitation as
to the scope of use or functionality of embodiments of the
invention described herein. Regardless, cloud computing pro-
cessor 6010 is capable of being implemented and/or perform-
ing any of the functionality set forth hereinabove.

In cloud computing processor 6010 there is a computer
system/server 6012, which is operational with numerous
other general purpose or special purpose computing system
environments or configurations. Examples of well-known
computing systems, environments, and/or configurations that
may be suitable for use with computer system/server 6012
include, but are not limited to, personal computer systems,
server computer systems, thin clients, thick clients, handheld
or laptop devices, multiprocessor systems, microprocessor-
based systems, set top boxes, programmable consumer elec-
tronics, network PCs, minicomputer systems, mainframe
computer systems, and distributed cloud computing environ-
ments that include any of the above systems or devices, and
the like.

Computer system/server 6012 may be described in the
general context of computer system executable instructions,
such as program modules, being executed by a computer
system. Generally, program modules may include routines,
programs, objects, components, logic, data structures, and so
on that perform particular tasks or implement particular
abstract data types. Computer system/server 6012 may be
practiced in distributed cloud computing environments where
tasks are performed by remote processing devices that are
linked through a communications network. In a distributed
cloud computing environment, program modules may be
located in both local and remote computer system storage
media including memory storage devices.

As shown in FIG. 17, computer systeny/server 6012 in
cloud computing processor 6010 is shown in the form of a
general-purpose computing device. The components of com-
puter system/server 6012 may include, but are not limited to,
one or more processors or processing units 6016, a system
memory 6028, and a bus 6018 that couples various system
components including system memory 6028 to processor
6016.

10

20

25

40

45

55

22

Bus 6018 represents one or more of any of several types of
bus structures, including a memory bus or memory controller,
aperipheral bus, an accelerated graphics port, and a processor
orlocal bus using any of a variety of bus architectures. By way
of example, and not limitation, such architectures include
Industry Standard Architecture (ISA) bus, Micro Channel
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video
Electronics Standards Association (VESA) local bus, and
Peripheral Component Interconnect (PCI) bus.

Computer system/server 6012 typically includes a variety
of computer system readable media. Such media may be any
available media that is accessible by computer system/server
6012, and it includes both volatile and non-volatile media,
removable and non-removable media.

System memory 6028 can include computer system read-
able media in the form of volatile memory, such as random
access memory (RAM) 6030 and/or cache memory 6032.
Computer system/server 6012 may further include other
removable/non-removable, volatile/non-volatile computer
system storage media. By way of example only, storage sys-
tem 6034 can be provided for reading from and writing to a
non-removable, non-volatile magnetic media (not shown and
typically called a “hard drive”). Although not shown, a mag-
netic disk drive for reading from and writing to a removable,
non-volatile magnetic disk (e.g., a “floppy disk™), and an
optical disk drive for reading from or writing to a removable,
non-volatile optical disk such as a CD-ROM, DVD-ROM or
other optical media can be provided. In such instances, each
can be connected to bus 6018 by one or more data media
interfaces. As will be further depicted and described below,
memory 6028 may include at least one program product
having a set (e.g., at least one) of program modules that are
configured to carry out the functions of embodiments of the
invention.

Program/utility 6040, having a set (at least one) of program
modules 6042, may be stored in memory 6028 by way of
example, and not limitation, as well as an operating system,
one or more application programs, other program modules,
and program data. Each of the operating system, one or more
application programs, other program modules, and program
data or some combination thereof, may include an implemen-
tation of a networking environment. Program modules 6042
generally carry out the functions and/or methodologies of
embodiments of the invention as described herein.

Computer system/server 6012 may also communicate with
one or more external devices 6014 such as a keyboard, a
pointing device, a display 6024, etc.; one or more devices that
enable a user to interact with computer systeny/server 6012;
and/or any devices (e.g., network card, modem, etc.) that
enable computer system/server 6012 to communicate with
one or more other computing devices. Such communication
can occur via Input/Output (I/O) interfaces 6022. Still yet,
computer system/server 6012 can communicate with one or
more networks such as a local area network (LAN), a general
wide area network (WAN), and/or a public network (e.g., the
Internet) via network adapter 6020. As depicted, network
adapter 6020 communicates with the other components of
computer system/server 6012 via bus 6018. It should be
understood that although not shown, other hardware and/or
software components could be used in conjunction with com-
puter system/server 6012. Examples, include, but are not
limited to: microcode, device drivers, redundant processing
units, external disk drive arrays, RAID systems, tape drives,
and data archival storage systems, etc.

Referring now to FIG. 18, illustrative cloud computing
environment 6050 is depicted. As shown, cloud computing
environment 6050 comprises one or more cloud computing

US 9,384,133 B2

23

processors 6010 with which local computing devices used by
cloud consumers, such as, for example, personal digital assis-
tant (PDA) or cellular telephone 6054 A, desktop computer
6054B, laptop computer 6054C, and/or automobile computer
system 6054N may communicate. Processors 6010 may com-
municate with one another. They may be grouped (not shown)
physically or virtually, in one or more networks, such as
Private, Community, Public, or Hybrid clouds as described
hereinabove, or a combination thereof. This allows cloud
computing environment 6050 to offer infrastructure, plat-
forms and/or software as services for which a cloud consumer
does not need to maintain resources on a local computing
device. It is understood that the types of computing devices
6054 A-N shown in FIG. 18 are intended to be illustrative only
and that computing processors 6010 and cloud computing
environment 6050 can communicate with any type of com-
puterized device over any type of network and/or network
addressable connection (e.g., using a web browser).

Referring now to FIG. 19, a set of functional abstraction
layers provided by cloud computing environment 6050 (FIG.
18) is shown. It should be understood in advance that the
components, layers, and functions shown in FIG. 19 are
intended to be illustrative only and embodiments of the inven-
tion are not limited thereto. As depicted, the following layers
and corresponding functions are provided:

Hardware and software layer 6060 includes hardware and
software components. Examples of hardware components
include mainframes, in one example IBM® zSeries® sys-
tems; RISC (Reduced Instruction Set Computer) architecture
based servers, in one example IBM pSeries® systems; IBM
xSeries® systems; IBM BladeCenter® systems; storage
devices; networks and networking components. Examples of
software components include network application server
software, in one example IBM WebSphere® application
server software; and database software, in one example IBM
DB2® database software. (IBM, zSeries, pSeries, xSeries,
BladeCenter, WebSphere, and DB2 are trademarks of Inter-
national Business Machines Corporation registered in many
jurisdictions worldwide).

Virtualization layer 6062 provides an abstraction layer
from which the following examples of virtual entities may be
provided: virtual servers; virtual storage; virtual networks,
including virtual private networks; virtual applications and
operating systems; and virtual clients.

In one example, management layer 6064 may provide the
functions described below. Resource provisioning provides
dynamic procurement of computing resources and other
resources that are utilized to perform tasks within the cloud
computing environment. Metering and Pricing provide cost
tracking as resources are utilized within the cloud computing
environment, and billing or invoicing for consumption of
these resources. In one example, these resources may com-
prise application software licenses. Security provides identity
verification for cloud consumers and tasks, as well as protec-
tion for data and other resources. User portal provides access
to the cloud computing environment for consumers and sys-
tem administrators. Service level management provides
cloud computing resource allocation and management such
that required service levels are met. Service Level Agreement
(SLA) planning and fulfillment provide pre-arrangement for,
and procurement of, cloud computing resources for which a
future requirement is anticipated in accordance with an SLA.

Workloads layer 6066 provides examples of functionality
for which the cloud computing environment may be utilized.
Examples of workloads and functions which may be provided
from this layer include: mapping and navigation; software

20

25

35

40

45

55

24

development and lifecycle management; virtual classroom
education delivery; data analytics processing; and transaction
processing.
The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting. As used herein, the singular forms “a”, “an” and
“the” are intended to include the plural forms as well, unless
the context clearly indicates otherwise. It will be further
understood that the terms “comprises” and/or “comprising”,
when used in this specification, specify the presence of stated
features, integers, steps, operations, elements, and/or compo-
nents, but do not preclude the presence or addition of one or
more other features, integers, steps, operations, elements,
components and/or groups thereof.
The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below, if any, are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
one or more embodiments has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to in the form disclosed. Many modifications
and variations will be apparent to those of ordinary skill in the
art. The embodiment was chosen and described in order to
best explain various aspects and the practical application, and
to enable others of ordinary skill in the art to understand
various embodiments with various modifications as are suited
to the particular use contemplated.
What is claimed is:
1. A computer program product for performing operations
in a computing environment, said computer program product
comprising:
a computer readable storage medium readable by a pro-
cessing circuit and storing instructions for execution by
the processing circuit for performing a method compris-
ing:
initiating, by a processor of the computing environment,
a synchronization operation to instruct one or more
other processors of the computing environment to
commit pending updates of one or more status indi-
cators of one or more entries of an address translation
structure located in memory;

receiving, by the processor, a completion indication by
the one or more other processors indicating comple-
tion of the synchronization operation;

invalidating, by the processor, based on receipt of the
completion indication from the one or more other
processors, one or more selected entries of one or
more local caches, the one or more selected entries
having at least one status indicator that has been
updated; and

performing an operation using one or more entries of the
address translation structure, wherein the performing
the operation comprises changing a plurality of units
of memory from read-write to read-only.

2. The computer program product of claim 1, wherein the
invalidating comprises exclusively invalidating the one or
more selected entries.

3. The computer program product of claim 1, wherein the
one or more status indicators comprise at least one of a change
indicator that indicates whether a unit of memory associated
with the change indicator has been updated or a reference
indicator that indicates whether the unit of memory associ-
ated with the reference indicator has been accessed.

4. The computer program product of claim 3, wherein the
unit of memory comprises a page of memory, the address
translation structure comprises a page table, and wherein the

US 9,384,133 B2

25

change indicator and the reference indicator are located in a
page table entry corresponding to the page of memory.

5. The computer program product of claim 1, wherein the
initiating the synchronization operation comprises issuing a
synchronization instruction, the synchronization instruction
to send a synchronization request to the one or more other
processors.

6. The computer program product of claim 1, wherein the
performing the operation is based on receiving the comple-
tion indication from the one or more other processors, and
wherein the method further comprises initiating another syn-
chronization operation prior to the invalidating, and wherein
the invalidating is performed based on receiving a completion
indication for the another synchronization operation.

7. The computer program product of claim 1, wherein the
operation is a bulk operation to be performed on a plurality of
units of memory.

8. A computer system for performing operations in a com-
puting environment, said computer system comprising:

a memory; and

a processor in communications with the memory, wherein

the computer system is configured to perform a method,

said method comprising:

initiating, by the processor of the computing environ-
ment, a synchronization operation to instruct one or
more other processors of the computing environment
to commit pending updates of one or more status
indicators of one or more entries of an address trans-
lation structure located in memory;

receiving, by the processor, a completion indication by
the one or more other processors indicating comple-
tion of the synchronization operation;

invalidating, by the processor, based on receipt of the
completion indication from the one or more other
processors, one or more selected entries of one or
more local caches, the one or more selected entries
having at least one status indicator that has been
updated; and

performing an operation using one or more entries of the
address translation structure, wherein the performing
the operation comprises changing a plurality of units
of memory from read-write to read-only.

9. The computer system of claim 8, wherein the one or
more status indicators comprise at least one of a change
indicator that indicates whether a unit of memory associated
with the change indicator has been updated or a reference
indicator that indicates whether the unit of memory associ-
ated with the reference indicator has been accessed.

10. The computer system of claim 8, wherein the perform-
ing the operation is based on receiving the completion indi-
cation from the one or more other processors, and wherein the
method further comprises initiating another synchronization
operation prior to the invalidating, and wherein the invalidat-
ing is performed based on receiving a completion indication
for the another synchronization operation.

11. The computer system of claim 8, wherein the operation
is a bulk operation to be performed on a plurality of units of
memory.

12. The computer system of claim 8, wherein the initiating
the synchronization operation comprises issuing a synchro-
nization instruction, the synchronization instruction to send a
synchronization request to the one or more other processors.

10

15

20

25

30

35

40

45

50

55

60

26

13. A computer program product for performing opera-
tions in a computing environment, said computer program
product comprising:
a computer readable storage medium readable by a pro-
cessing circuit and storing instructions for execution by
the processing circuit for performing a method compris-
ing:
initiating, by a processor of the computing environment,
a synchronization operation to instruct one or more
other processors of the computing environment to
commit pending updates of one or more status indi-
cators of one or more entries of an address translation
structure located in memory;

receiving, by the processor, a completion indication by
the one or more other processors indicating comple-
tion of the synchronization operation;

invalidating, by the processor, based on receipt of the
completion indication from the one or more other
processors, one or more selected entries of one or
more local caches, the one or more selected entries
having at least one status indicator that has been
updated; and

performing an operation using one or more entries of the
address translation structure, wherein the performing
the operation is based on receiving the completion
indication from the one or more other processors, and
wherein the method further comprises initiating
another synchronization operation prior to the invali-
dating, and wherein the invalidating is performed
based on receiving a completion indication for the
another synchronization operation.

14. The computer program product of claim 13, wherein
the one or more status indicators comprise at least one of a
change indicator that indicates whether a unit of memory
associated with the change indicator has been updated or a
reference indicator that indicates whether the unit of memory
associated with the reference indicator has been accessed.

15. The computer program product of claim 14, wherein
the unit of memory comprises a page of memory, the address
translation structure comprises a page table, and wherein the
change indicator and the reference indicator are located in a
page table entry corresponding to the page of memory.

16. The computer program product of claim 13, wherein
the initiating the synchronization operation comprises issu-
ing a synchronization instruction, the synchronization
instruction to send a synchronization request to the one or
more other processors.

17. The computer program product of claim 13, wherein
the operation is a bulk operation to be performed on a plural-
ity of units of memory.

18. The computer program product of claim 13, wherein
the performing the operation comprises changing a plurality
of units of memory from read-write to read-only.

19. The computer program product of claim 13, wherein
the performing the operation comprises providing a free list
of a plurality of units of memory.

20. The computer program product of claim 13, wherein
the performing the operation comprises managing memory,
based on a process terminating.

#* #* #* #* #*

